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Abstract  

An outline of a new mathematical theory is presented, namely, the generalized 
phenomenological irreversible thermodynamic theory (GPI'I~) evolved by the author. This 
theory involves the identification of a new mathematical quantity designated as the thermo- 
dynamic heat (which is different from Born's mechanically definable one) and the adoption 
of a Universal lnaccessib~ty Principle (UIP) which yields the simplest extended Gibbs 
relation (EGR). The second law inequalities are thereby generalized and provide appropri- 
ate constraints on open systems. The potentiality of GPITr has been discussed with 
reference to Boltzmarm's H-function and the thermodynamic entropy concept, and also in 
regard to the development of the abstract thermodynamic description, in particular with 
reference to the extended Gibbsian space (EGS) provided by the EGR as against the 
currently used Gibbsian space (GS). 

This communication deals with the presentation of an outline of a new mathe- 
matical theory developed in the realm of irreversible thermodynamics, namely, the 
generalized phenomenological irreversible thermodynamic theory (GPITT). In a sense, 
this communication serves to establish our GPITI'. 

In the domain of the local equilibrium assumption (LEA), one assumes [1-5] the 
validity of  Gibbs' relation (GR) in the local form: 

dU T dS dv dck 
- -  = - p  ............... + ( 1 )  

dt dt dt k dt 

where U is the intemal energy, S the entropy, v the specific volume, c k are the mass 
fractions of the components, T is the thermodynamic temperature, p the thermodynamic 
pressure, and Pk are the chemical potentials. The cap (^) over the symbols represents the 
corresponding specific quantifies and t is time. The standard fluid-dynamical internal 
energy balance equation, e.g. for systems with no electromagnetic polarization effects 
but with conservative body forces, in the local form reads: 
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at) 
dt p 1V . jq  -t- p - i T  V ~ + p - l ~ J k . F k  (2) 

k 

where p is the local material density, T the stress tensor, ~ the barycentric velocity, Jk 
are the diffusion flux densities, F k are the conservative body forces per unit mass of the 
respective components, and J is the so-called heat flux density. q 

The transformation of eq. (2) into eq. (1) is tantamount to the adoption of the 
condition: 

T = - p S  + I1, (3)  

where lq is obtained as the dissipative stress tensor, Sis the unit tensor, and p is obtained 
as the thermodynamic pressure, not necessarily equal to -(1/3)  TrT.  The second 
condition gives the thermodynamic heat as: 

-~ dck 
dq - V . J q +  H : V o +  ~,Jk.  Fk - ~ , p k p - -  (4) 

P d-~ = k k dt 

In eq. (4), the first three terms on the fight-hand side quantify the calorimetrically 
measurableheat effects and are contained in the fluid-dynamical internal energy balance 
equation (2). The first term precisely measures the conduction-in of heat and matter 
taken together, the second one measures the dissipation of work into heat due to the 
contact forces, and the third one is the diffusive source of work against the body forces. 
Although the diffusion at nonvanishing rate is inherently dissipative, the diffusive 
source of work, as it appears in the internal energy balance equation, does not quantify 
the corresponding dissipation of energy. This then reveals that the mechanically defin- 
able heat, which we hereby designate as Born's heat and identify with the subscript B, 
contained in eq. (2) is given as: 

dqB - V .  Jq + lq:V1J + ~ J k "  Fk. (5) 
P dt - k 

However, from the above analysis it is evident that the thermodynamic definition 
of entropy follows from eq. (4) and not from eq. (5), i.e. we obtain: 

dq dS dqB 
dt T - ~ t  ;e dt  (6) 

The failure of Born's heat in generating the thermodynamic thermal parameters, even 
in the realm of LEA, is thereby established. On the other hand, from eqs. (2), (3) and 
(4) we obtain: 

dqB dH dp 
P dt - p dt dt '  (7) 
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on adopting the following obvious definition of the specific enthalpy/-) • 

Jq= O +pv. 

Note that eq. (7) is the local form analogue of the relation: 

( 8 )  

dQ = d H -  Vdp, (9) 

which is well known in classical thermodynamics for closed systems with no 
mechanical irreversibility therein. 

Thus, the parallelism between eqs. (7) and (9) demonstrates that Bom's heat has 
an enthalpomechanical character, while the equality in eq. (6) leads us to identify and 
establish the thermodynamic heat as distinctly different from the calorimetric heat. The 
former appears to assume a statistical character (an intuitive assertion). Now eq. (4) 
involves a methodology of converting Born's heat into the corresponding thermo- 
dynamic heat by adding to the former a nonconventional (nc) heat term. The latter, in 
the domain of LEA, is obtained as: 

dqnc dck 
p - p ( l O )  

dt k dt 

Hence, we identify in the nonconventional heat term an index of enthalpo-mechanical- 
statistical compensation in nonequilibrium situations. However, this index vanishes 
only in the case of closed systems in the limit of thermodynamic reversibility (TR). 
Equation (4) may be more compactly expressed as: 

dq dqB dqnc 
- + - -  ( l l )  

dt dt dt 

An obvious need for working through the concept of heat is strongly indicated by the 
above analysis. Hence, below we present the ab initio development of the GPITT via 
the new mathematical quantity, the thermodynamic heat. Indeed, it is an irony of the 
situation that at the thermodynamic level one does not favour the use of the heat concept 
except at the very elementary level, whereas in all kinetic theory discussions [6, 7] the 
heat concept, such as heat flux density, continues to occupy a definite place. 

Since the fluid-dynamical intemal energy balance equation (2) can provide only 
eq. (5) as the mechanically definable heat (irrespective of whether the system happens 
to be within or outside the domain of LEA), it is hereby proposed to adopt eq. (11) as 
the generalized definition of thermodynamic heat valid for the entire range of non- 
equilibrium situations. Thus, from eqs. (6), (7) and (11) we obtain: 

dqn c dO, dp dT 
dt - dt v -d-Tt + ~q d---t (12) 
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as the generalized expression for the nonconventional heat, where (~ is the specific 
Gibbs function: 

d = O + p v - r ~ .  (13) 

On incorporating eqs. (3)-(6), (11) and (12) into eq. (2), we obtain the extended Gibbs 
relation (EGR): 

d e  _ T d~ dv dG d p + ~  dr  (14) 
at  d t -  p d t  + d--t- - v d t  a t  

Amusingly, the operation of the dynamic local version of the Gibbs-Duhem equation 
(GDE), 

d/-tk dp dT 
~ c k - - - v - -  +g  - -  = 0, (15) 
k dt dt dt 

reduces the EGR to GR. This establishes that the primary criterion of the operation of 
LEA is the GDE, and the GR is obtained as the working one. The type of equilibrium 
required for the operation of LEA is thus the mutual control among the intensities within 
the continuum particles. Over and above this, if similar control is also established with 
the neighbouring continuum particles, we approach an overall thermodynamic equili- 
brium situaton. 

Our GPITT is based on the following crucial postulates: 

(a) It is possible to identify the thermodynamic work coefficients (e.g. the negative 
of the thermodynamic pressure) L (a~ in nonequilibrium situations such that L(C~dl (c~ 
(where l (c° are the conjugate work coordinates [4,8]) measures the respective 
nondissipative components of the work associated with the nondiffusive works 
(e.g. due to the contact forces and electromagnetic polarization). 

(b) Thermodynamic heat is distinctly different from Born's heat except in the limit 
of TR for closed systems. 

(c) Thermodynamic thermal parameters for the nonequilibrium states are guaranteed 
by the equality in eq. (6), which is the explicit result of adopting a Universal 
Inaccessibility Principle (UIP) and applying it to the thermodynamic heat ele- 
ment. The UIP reads as follows: 

In every neighbourhood of every equilibrium or nonequilibrium state of a 
thermodynamic system, there exist states which are unattainable from it by any 
reversible or (totally) spontaneous path. 

This principle is based on the fact that through every nonequilibrium state of a 
thermodynamic system, one and only one real trajectory passes. The exceptions 
are the nonequilibrium stationary states through which none (real trajectory) 
exists. 
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In the event of component-wise inhomogeneity within the continuum particles, 
instead of eq. (6) UIP provides that: 

dq  = ~Tk dS~ (16) 
dt  k dt ' 

and hence accordingly the GR, EGR and GDE become modified. Also, if the work due 
to electromagnetic polarization is included, the corresponding nondissipative terms 
would appear in EGR, GDE and GR. In this event, the generalized EGR takes the form: 

dO Z T  k dSk E L ( a  ) d/('~) dG = - - +  - - + - -  
dt k dt a dt dt 

.(a) dL (a) dT k 
+ L l  d----~ + Y_.,Sk (17) 

a k dt 

Thus, L (m are the nonequilibrium thermodynamic work coefficients and 1 ('z) are the 
respective conjugate work coordinates. 

Moreover, to conform with the requirement of the generalized entropy law, 

P dt - V . J s  + as (18) 

V.Js ~ O, (19) 

as  >- 0, (20) 

where Js is the conductive flux density of entropy and as is the rate of entropy 
production per unit volume, the nonconventional heat in its source term must have a 
dissipative component. For example, in eq. (12) we have: 

(dqnc, sourc~ ) = --~,#kmk 
P \ dt  diss k 

-- lOk ---d~J dZ + S P  -d~ diss 

where we have used the standard fluid-dynamical relation [1,2]: 

dCk 
- -V ' Jk  + mk, (22) 

P dt 
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where the m k are the mass fraction Source densities of the components due to their 
participation in chemical reactions. 

One of the achievements of the GPITI" is that no new thermodynamic parameters 
need be identified which are strange to equilibrium thermodynamics, even for situations 
far from equilibrium. Of course, these thermodynamic intensities now have been 
defined for nonequilibrium situations. All the Maxwell relations tenable in non- 
equilibrium situations simply follow from the EGR on applying Euler's reciprocity 
criteria of exactness. In comparison with the EGR developed in extended irreversible 
thermodynamics (EIT) [9-21], and those in the statistical theories of Eu [22-25] and 
Keizer [26,27], ours appears to be simplest. The self-consistency of the GPITI" may be 
appreciated in several ways. For example, the generalized expression for the entropy 
production a s, e.g. corresponding to the EGR (14): 

I~S = ZE(Jq' --#kJk):V(~-~)t- ~-~ ~k"l-Jkl)k~ I:V'°-* 

).  v ( + #k ) 
#k mk 

Tk 

-~-k\ at Vk at -~t/Jdis~ "]->0' 
(23) 

reduces to the conventional entropy production expression corresponding to the LEA 
domain [1] on guaranteeing the validity of GDE. 

Moreover, the GPITT offers an opportunity to revisit Clausius' second law 
inequalities. Thus, the generalized Clausius second law inequality in the local form is 
obtained as: 

p __ 
dt > ~  

dqnc, k, cond ) (24) 
-V'Jqk + P dt ' 

and in the global form (open systems) as: 

d5 ! dS 1 (_V.jq ' 
d--i= p-g v>_ IZ E 

V k 

+ P  dqnc'k'c°nd) • V ' d t  (25) 

which, for the closed systems with no component-wise inhomogeneity, reduces to the 
conventional one: 

d 5 >  l(dQ) 
d---i - T ~ -  " (26) 
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In eq. (25), V denotes the volume of the entire system. The above inequalities seem to 
pose a practical difficulty, for, instead of nonequilibrium thermodynamic system tem- 
peratures r (Tk), one precisely measures the surrounding temperature T o. However, this 
ambiguity is superfluous. For example, consider the inequality (26), in which the 
adopted definition of temperature gives: 

T < T  o, d Q > O ,  

T >  T o, d Q < O .  (27) 

In both situations we have precisely 

dQ dQ 
- -  > -  ( 2 8 )  
r To 

Hence, instead of (26) we have the more practical expression: 

ds  1 dQ 
- -  _ > -  - -  ( 2 9 )  
dt To dt"  

The thermodynamic description in the framework of GPITI" is basically for 
spontaneous transitions and hence for those occurring between nonequilibrium states. 
However, it can be easily truncated for those spontaneous paths whose end states are 
the equilibrium states, which in turn can be further tnmcated for the reversible paths 
under the constraint of TR. With the advent of the GPITT, the nonequilibrium states 
have been more convincingly established as key ones among the range of thermo- 
dynamic states. The generalized thermodynamic equation of state in the local form (per 
unit mass version) is obtained as: 

= ~Tkgk + ~L(a) / (c0+ G, (30) 
k 

which, we note, is entirely determined by the system's thermodynamic extensities and 
the conjugate intensities. This results from the ab initio consideration of the nonequili- 
brium states in the development of the GPITr. 

For dilute gases, whose molecules can have only translational motion, the kinetic 
theory [6,7] generates expressions for each term of the intemal energy balance equation 
using the peculiar velocity vector which, by definition, is the velocity of the hidden 
motion of the molecules. Recognition that the participation of matter in hidden motion 
explicitly leads to the internal energy balance equation (as mentioned above) can be 
exploited to develop a concealed-continuum model (CCM) on assigning every contri- 
bution in the internal energy to some sort of translational motion of matter. Considering 
the motion of matter in CCM provides an altemative and equivalent expression for the 
internal energy balance and also for Bom's heat. On the other hand, for the thermo- 
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dynamic heat, we analogously propose a thermo-continuum model (TCM). Details of 
these aspects will be discussed in a following communication. 

It is well known that there are implicit as well as explicit claims regarding the 
interpretation of the negative of Boltzmann's H-function as the entropy function. This, 
in view of the concept of thermodynamic heat generated in GPITT, requires the follow- 
ing correspondence at the continuum particle level: 

dqk dlnf 
¢:* n (1 +lnf) - - ,  (31) 

dt dt 

where f is the distribution function and n is the number density of molecules. On 
independently establishing the equivalence (31), in which our TCM and CCM will play 
an important role, the ambiguities between the thermodynamic and statistical entropies 
would be resolved. Accordingly, we have already undertaken the investigation of this 
aspect. 

Yet another aspect of thermodynamic studies currently attracting much attention 
is the generation of abstract thermodynamic descriptions [28-36], namely, metric geo- 
metrical and network thermodynamic descriptions. In these studies, even descriptions 
for nonequilibrium situations have been attempted. In the metric geometrical approach, 
the loss of the availability function AA u is exploited to generate the corresponding 
description. The inherent advantage in the use of this function lies in the :fact that herein 
one simply need not bother about the identification of the system intensities, which 
anyway cannot be uniquely assigned to the entire global system in nonequilibrium 
situations (vide supra). Thus, a direct global description is promised; however, it is 
important to note that therein one works within the thermodynamic Gibbsian space (GS) 
determined solely by the system extensities. In GPITI" we obtain an EGR which 
requires the construction of an extended Gibbsian space 0~GS) for abstract thermo- 
dynamic purposes; this is generated by the system intensities and extensities taken as 
variables. However, the GS turns out to be a suitable projection space within the EGS. 
Further, from the GPITI' there evolves a description at the continuum particle level, 
which in turn has to be integrated to generate the corresponding global description. 
Thus, an alternative but complementary metric geometrical description seems probable 
with the advent of the GPITI'. Similarly, in the network thermodynamic description, the 
nonreciprocal networks are indicated for the spontaneous paths. This is because at 
present in network thermodynamics, one still continues to work within the GS; again, 
the EGS through the GPITF promises reciprocal networks for the spontaneous paths. 

Our approach demands a search for the more abstract criteria for distinguishing 
between the real (spontaneous) and apparent paths through nonequilibrium states on the 
one hand, and that between the reversible and spontaneous paths on the other hand. The 
solution seems to lie, firstly, in arriving at a decision whether the EGS possesses 
Euclidean, Riemannian or Lobachevskian geometry and, secondly, on the role of the 
operation of Lyapunov functional-type criteria [37-39] for the spontaneous paths. 
Furthermore, the criteria to be evolved within the EGS have to reproduce those existing 
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essentially in GS on a simple but suitable projection within the EGS. Moreover, one is 
also tempted to enquire whether the existing dilemma of Andresen et al. [34] regarding 
the noncompatibility between the thermodynamic Gibbsian 0~uclidean) geometry and 
the semi-Riemannian one (Weinhold's metric) is due to the non-recognition of the EGS. 
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